Extensions 1→N→G→Q→1 with N=C10 and Q=C22

Direct product G=N×Q with N=C10 and Q=C22
dρLabelID
C22×C1040C2^2xC1040,14

Semidirect products G=N:Q with N=C10 and Q=C22
extensionφ:Q→Aut NdρLabelID
C10⋊C22 = C22×D5φ: C22/C2C2 ⊆ Aut C1020C10:C2^240,13

Non-split extensions G=N.Q with N=C10 and Q=C22
extensionφ:Q→Aut NdρLabelID
C10.1C22 = Dic10φ: C22/C2C2 ⊆ Aut C10402-C10.1C2^240,4
C10.2C22 = C4×D5φ: C22/C2C2 ⊆ Aut C10202C10.2C2^240,5
C10.3C22 = D20φ: C22/C2C2 ⊆ Aut C10202+C10.3C2^240,6
C10.4C22 = C2×Dic5φ: C22/C2C2 ⊆ Aut C1040C10.4C2^240,7
C10.5C22 = C5⋊D4φ: C22/C2C2 ⊆ Aut C10202C10.5C2^240,8
C10.6C22 = C5×D4central extension (φ=1)202C10.6C2^240,10
C10.7C22 = C5×Q8central extension (φ=1)402C10.7C2^240,11

׿
×
𝔽